

Determination of Thermal Properties of Bombax Costatum

Ikerave A.F., Irtwange S.V., Ahemen S.A.

Akperan orshi college of agriculture, yandev, gboko, nigeria Federal university of agriculture, makurdi, nigeria Benue state university, centre for food technology and research, makurdi, nigeria

Submitted: 25-01-2022

Revised: 05-02-2022

Accepted: 08-02-2022

ABSTRACT

Thermal properties of liquid food products are very important and frequently critical parameters in food processing, handling and storage. Therefore reliable and useful thermal property data should be established for food engineers in order to effectively design and develop processes and equipment needed in the drying, storage and thermal processing of agricultural materials. Thermal properties of Bombax costatum such as specific heat capacity, thermal diffusivity, thermal conductivity, bulk density and activation energy were determined at 10%, 28% and 82% of moisture contents respectively. The result showed that the specific heat capacity and bulk density of Bombax costatum increase with moisture content while thermal diffusivity and thermal conductivity did not produce a particular trend. The activation energy for all samples of Bombax costatum decreases with moisture content and viscosity. It was also established that the viscosity of Bombax costatum decreases with increase in temperature. The ANOVA and regression analyses were performed using the CRD and SPSS 16 respectively.

Key words: Thermal, Conductivity, Diffusivity, Specific heat capacity, Temperature, Activation energy, Viscosity and Moisture content

I. INTRODUCTION

<u>Bombax</u> costatum is a deciduous, open savannah woodland tree. It is 3 - 15m high and up to 1m in girth (Keay, 1989). It produces flowers from November to February and then fruits from February to June. During Hamattan season (from November to March) when most crops are harvested, the flowers become loosened from the stalk and fall freely with little blow of wind (Tingir, 2003). The petals are detached from the calyx which is then dried and ground into powder and stored for reconstitution into soup. Because of the ability of the powder to form a gel when mixed with water, it can be classified as a food gum. Food gums are high molecular weight polymeric compounds, mostly carbohydrates which are characterized by their ability to give highly viscous solution at low concentration (Ihekoronye and Ngoddy, 1985). Glicksman (1982) described food gums as long chain polymers that dissolve or dispense in water to give a thickening or viscosity producing effect. In many parts of West Africa especially middle belt states of Nigeria, there are many traditional foods that are swallowed without mastication. Such foods include the famous pounded yam and other types of foods prepared and moulded from cereals like maize, sorghum and millet (Kent, 1983). Traditionally such foods are eaten along with soups and stews that are prepared to facilitate the movement of food along the digestive track. In Nigeria, there are many of these types of soup which are generally referred to as "slimming soup" due to their viscous gelatinous nature when they are cooked. Most common amongst these are Okra, ewedu, ogbono, okoho and ager. One additional of such very popular soups in Tiv land is Genger which is produced from the flowers of the plant Bombax costatum both in fresh and dry form, which is the focus of this study. Due to wide acceptability and popularity of the soup, the need to produce data that will aid its handling, processing and storage is gaining prominence. Thermal parameters such as specific heat, thermal conductivity, thermal diffusivity, density and and activatiom energy are important. This study is therefore aimed at investigating the thermal properties of Bombax costatum for the purpose of combining equipment and raw materials during processing to achieve quality of finished product (Toledo, 1980; Sherman, 1974). Thermal properties of foods include thermal conductivity, thermal

diffusivity, density and specific heat. Knowledge of these thermal properties of food substances is essential to researchers and designers for the optimum design of heat transfer, dehydration and drying process (Odigboh, 1978).

Specific objectives

To investigate the effect of temperature on i. the viscosity of Bombax costatum.

To determine the specific heat capacity, ii. thermal diffusivity and thermal conductivity of Bombax costatum

Many edible biological materials such as Okoho, Bombax costatum etc in Nigeria are usually available for a short period of the year. The desire to maintain high quality standards of such products is usually of paramount importance (Anaka, 1990). However lack of information on some of the quality control parameters of such materials tends to restrain the attainment of such noble objectives. Thermal parameters, are some of the prerequisites necessary for quality control and process formation during processing and storage. Thermal properties of Bombax costatum are also essential for quality cooking, commercial production, equipment and process design.

MATERIALS AND METHODS II.

Sample Preparation

This study was conducted on three samples of **Bombax** costatum obtained from Yandev Community of Gboko Local Government Area of Benue State, Nigeria. Flowers were collected from a chosen tree as they droped without the influence of any human activity. Petals were manually detached using hands while the calyx were reserved for the study as can be seen in Plate 1. These samples were studied at the moisture 82%wb, contents of 28%wb and 10% wb respectively. These materials were pounded and sieved to achieve uniform particle size. Equal volume of distilled water was used along with equal mass of sample to form slurries for the three samples. The experiments for the determination of thermal properties of the samples were carried out in the chemistry of food laboratory, food science and technology department of the University of Agriculture Makurdi from December 3rd to December 22nd 2010. Temperatures at all experiments were measured using either the mercury in glass thermometer graduated in degree celcius ($^{\circ}C$) or the thermocouple graduated in milivoltmeter. Samples were always stirred for even distribution of heat during measurements. The moisture content (percent wet basis) was measured by air-oven

method. Wet basis which is expressed in a lot of literature is mostly used by farmers. Apparatus such as electronic weighing balance, crucibles, oven (gallencarp) and thermometer were used to carry out the experiments, while Equation (1) was used for the calculation of moisture content.

Moisture content =

weight of sample (w_s) -constant weight (w_c) *100%.....(1) weight of sample (w_s)

Bulk densities of the test samples at 82% wb.28% wb and 10% wb were determined using the tapping method. Apparatus such as electronic weighing balance (FA2004 Max 200g), measuring cylinder and spoon were used for the experiments. Five replicated measurements of samples were taken in a measuring cylinder, using an electronic weighting balance to obtain the masses at room Measured masses obtained were temperature. substituted with the measured volume in to Equation (2) to obtain their densities ; (g)

Density =
$$\frac{\text{mass}}{\text{volume}}$$

(cm ³ (2)

The viscosity of Bombax costatum was determined with the aid of the following apparatus: А Brookfield viscometer, electric hotplate, beaker, thermometer, distilled water, ice par and. Brookfield viscometer. The experiment was based on the power law equation.

 $=K\gamma^{n}$(3)

Where:

τ= Shear stress

K= Flow consistency index

> Shear rate $\gamma =$

Flow behaviour index n =

The experiment was conducted at four temperature levels $(30^{\circ}C, 40^{\circ}C, 50^{\circ}C \text{ and } 60^{\circ}C)$ using spindle 4 and four selectable speeds 6, 12, 30 and 60 rpm. Slurries were reconstituted for the three samples using same volume of distilled water and mass of sample across the three samples and treated one after the other. Each sample was heated above the required temperature level in a calorimeter cup on a hot plate and cooled to the desired temperature, while being monitored with a thermometer. The slurry just enough to cover the immersion groove of the spindle shaft was immediately transferred into the viscometer cup alreadv maintained at the corresponding temperature level in a water bath. The apparatus was energized with the viscometer guard leg on and viscosity readings were taken. With the aid of flash or indicators the correct spindle size and speed for the experiment was achieved with ease.

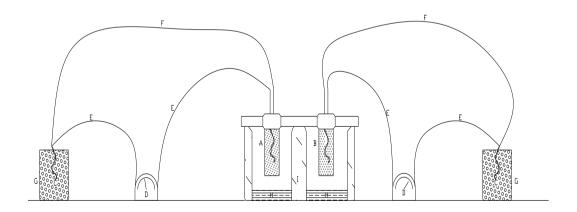
DOI: 10.35629/5252-0402400412 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 401

Readings were replicated three times at interval of two minutes, using the same spindle and speed, but different portions of the <u>Bombax costatum</u> sample. A plot of log of apparent viscosity against log of shear rate was done for the three samples. Using the power law Equation, the regression equations for all temperature levels were determined from which the flow behaviour index (n) and the consistency index (K) were determined respectively.

To determine the Specific Heat Capacity of <u>Bombax costatum</u>, the following apparatus were used;T-type thermocouple made of copper and constantine wires, electronic weighing balance, hot plate, stop watch. The specific heat capacity of samples was calculated using equation (4), while Figure 4 presents a schematic drawing of the Comparison calorimeter set up for the determination of specific heat.

 $C_{S} = \frac{C_{a}W_{a} + C_{w}W_{w})\Delta Y_{b} - C_{b}W_{b}\Delta Y_{a}}{W_{s}\Delta Y_{b}}$(4)
Gonap(2000)

where:


AV

 $\Delta Y_a =$ Time for cup A and content to drop to Δt (sec)

 $\Delta Y_b = Time \text{ for cup } B \text{ and content to}$ drop to Δt (sec) $C_S = Specific \text{ heat capacity of sample}$ $C_a = Specific \text{ heat capacity of cup } A$

C _b	=	Specific heat capacity of cup B
C_{w}	=	Specific heat capacity of water
Ws	=	Weight of genger sample
W_{w}	=	Weight of water
Wa	=	Weight of cup A
	W_{b}	= Weight of cup B

Equal volume of distilled water and mass of sample were used to reconstitute slurries for the three samples. A known volume of distilled water and slurry were poured into the calorimeter cups and both heated to the same temperature of 90° C on a hot plate, which were monitored by the Thermocouples immersed into the centres of the calorimeter cups. The calorimeters were continuously stirred while the heating was in progress. The contents once heated to the required temperature level respectively were immediately transferred into bath filled with water and placed inside the cupboard, while ensuring no heat transfer by convection took place. Temperature readings were taken at two-minutes interval until no further cooling occurs This was replicated three times for each sample. Readings

Gonap(2000)
Fig.1: Comparison calorimeter set up for the determination of specific heat of Bombax
costatum.

	Costatui	11.	
Legend:		D	= Milivoltmeter
A and $B =$ Calorimeter A and Calorimeter	В	E	= Copper wire
containing water and sample respectively		F	= Constantine wire
C = Cold junction			G = Ice flask

α

A

H = Wooden cork

J = Hot junction

obtained were average and cooling curves plotted to determine the specific heat of the <u>Bombax</u> <u>costatum</u> samples at the temperature level.

3.7 Determination of Thermal Diffusivity of Bombax costatum

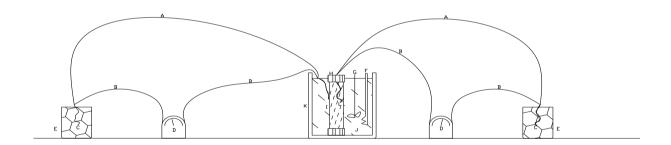
The thermal diffusivities of the <u>Bombax costatum</u> samples were determined using the Dickerson apparatus. The Dickerson apparatus consists of a water bath, electric heater, aluminum cylinder with two wooden caps wrapped tightly with polyethene to prevent water absorption, stirrer and two thermocouples as can be seen in Figure 2.

The thermal diffusivity of the samples was determined using Equation (5).

 $\alpha = \frac{0.25 \text{ AR}^2}{t_s - t_c}$

5) Akinremi(1999) Where: = Thermal diffusivity

= Heating rate (deduced from slope


of heating curve of sample) B = Badius of

= Radius of cylinder (m)

 $t_s = Surface$ optimum temperature reading (°C)

 $t_c = Centre optimum temperature reading (°C)$

The slurry (genger sample) was poured inside aluminum cylinder to the brim and the cylinder has both top and bottom placed inside the bath filled with water. The two thermocouples were to monitor the temperature rise inside and outside the cylinder respectively as the heater gets energized. Temperature readings were taken at intervals of 5 minutes simultaneously until the water in the bath started boiling and no further increase in the outside temperature reading. The time temperature data obtained was plotted and heating rate of the Sample which is the slope of the graph was used in Equation (5) to obtain the values of thermal diffusivities of all the samples.

Dickerson (1965) **Fig.2:** A schematic drawing of Dickerson apparatus used for the determination of thermal diffusivity of <u>Bombax costatum.</u>

Legend:

A = Constantine wire

- B = Copper wire
- C = Ice flask
- D = Milivoltmeter
- E = Cold junction
- F = Electric heater
- G = Stirrer
- H=Wooden cork
- I = Aluminium cylinder
- J = Water
- K =Water bath

The thermal conductivity of the samples was calculated theoretically using values obtained for specific heat, thermal diffusivity and bulk densities of the <u>Bombax costatum</u> samples obtained in this work. Thermal conductivity was determined using Equation (6).

N	_
αCsρ	
(6)	

Gonap(2000)

Where:Thermal conductivityK =Thermal conductivity $\alpha =$ Thermal diffusivity $\rho =$ Bulk density

 $C_s = Specific heat capacity$

3.9 Experimental Design and Statistical Analysis:

To investigate the effect of temperature on viscosity of Bombax costatum samples, Analysis was done for 3 - sample level, 4-shear rates and 4-temperature levels as one experimental design (i.e. $3 \times 4 \times 4$) in CRD (SPSS version 15, Ogbaji, 2003, Bajpai, 1978). Linear regression analyses was also carried out for the thermal properties and all other linearly related properties.

III. RESULTS

TABLE 1: THE EFFECT OF MOISTURE CONTENT AND SHEAR RATE OF THE SAMPLES ON VISCOSITY AT VARYING TEMPERATURES.

Sample	ShearRate (RPM)	Temperat	Temperature (⁰ C) and corresponding			
		30	40	50	60	
82%wb	6	25.807	25.730	25.990	26.060	
	12	17.441	17.562	17.948	16.964	
	30	8.600	8.355	8.331	7.903	
	60	5.293	5.060	5.180	5.347	
28%wb	6	34.483	32.183	32.33	31.953	
	12	20.442	19.625	19.726	18.783	
	30	12.648	12.474	12.054	10.265	
	60	6.643	6.610	6.160	5.993	
10%wb	6	37.217	32.697	31.187	31.943	
	12	24.726	22.474	21.383	20.93	
	30	13.432	11.912	11.976	11.95	
	60	7.543	6.480	6.563	5.950	

The above results are obtained from the average of three replications per cell.

TABLE 2: THE EFFECT OF MOISTURE CONTENT AND TEMPERATURE OF THE SAMPLES ON VISCOSITY AT VARYING SHEAR RATES

			Shear Rate					
Samples(MC%wb)	Temp. (°C)	6	12	30	60			

DOI: 10.35629/5252-0402400412 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 404

International Journal of Advances in Engineering and Management (IJAEM) Volume 4, Issue 2 Feb 2022, pp: 264-314 www.ijaem.net ISSN: 2395-5252

82	30	62.154	6.520	100.731	124.014
	40	58.596	71.147	91.955	111.652
	50	58.293	71.272	92.965	113.663
	60	58.293	71.212	92.965	113.663
28	30	83.406	103.400	137.366	170.294
	40	86.008	108.865	148.658	188.165
	50	76.465	94.139	123.923	152.567
	60	72.089	87.532	113.131	137.362
10	30	87.345	108.282	143.853	178.336
	40	81.925	100.861	132.773	163.462
	50	80.687	101.425	137.235	172.507
	60	75.821	92.061	118.987	144.474

TABLE 3 RESULTS OBTAINED FROM PLOT OF VISCOSITY VERSUS TEMPERATURE FOR
SAMPLES OF BOMBAXCOSTATUM

0111	ILLES OF	DOMDAA CODIATOM	
Sample (MC%wb)	Temp	Regression equation	\mathbb{R}^2
82	30	y = -0.010x + 25.43	0.729
	40	y = -0.026x + 18.46	0.833
	50	y = -0.021x + 9.249	0.889
	60	y = -0.002x + 5.093	0.810
28	30	y = -0.073x + 36.05	0.670
	40	y = -0.048x + 21.83	0.858
	50	y = -0.075x + 15.26	0.800
	60	y = -0.024x + 7.431	0.908
10	30	y = -0.173x + 41.05	0.681
	40	y = -0.129x + 28.33	0.946
	50	y = -0.051x + 14.57	0.700
	60	y = -0.047x + 8.747	0.833

TABLE 4: RESULTS OBTAINED FROM PLOT OF LOG OF CONSISTENCY INDEX VERSUS TEMPERATURE INVERSE AND THE CALCULATED ACTIVATION ENERGY FOR SAMPLES OF BOMBAX COSTATUM

Sample(MC%wb)	Linear regression	R^2	Activation energy (KJmol ⁻¹)	Arrhenius Equation
82	Y = 2.992x + 3.492	0.961	24.875	$Y = 3.492e^{\frac{2.99}{T}}$
28	Y = 5.595x + 3.689	0.931	46.517	$Y = 3.689e^{\frac{5.59}{T}}$
10	Y = 6.315x + 3.702	0.829	52.503	$Y = 3.702e^{\frac{6.32}{T}}$

TABLE 5: STATISTICAL INVESTIGATION (ANOVA) OF THE EFFECT OF VARYING SHEAR RATE ON VISCOSITY OF <u>BOMBAX</u> <u>COSTATUM</u> ACROSS ALL SAMPLES CONSIDERED.

		Sum of sq d	f	mean	F		Sig	
82%wb 0.00		Between groups		1047.091	3	349.030	5292.692	
App. viscosity $X10^{-3}NS/m^2$	Total	Within groups 1047.8	82	0.791 15	12	0.660		

International Journal of Advances in Engineering and Management (IJAEM) Volume 4, Issue 2 Feb 2022, pp: 264-314 www.ijaem.net ISSN: 2395-5252

28% wb 0.00 App. Viscosity X10 ⁻³ NS/m ²	Total	Between groups Within groups 1580.531	1571.114 9.418 15	3 12	523.705 0.785	667.314	
10%wb 0.00		Between groups	1654.449	3	551.483	194.111	
App. Viscosity X10 ⁻³ NS/M ²		Within groups Total	34.093 1688.542	12 15	2.841		

TABLE 6: ANALYSIS OF VARIANCE TO INVESTIGATE THE EFFECT OFTEMPERATURE ON VISCOSITY OF SAMPLES OF BOMBAXCOSTATUMAT 5% LEVEL OF SIGNIFICANCE

		Sum of sq	df	Mean sq	F	Sig
Viscosity at thirty	Between group	81.741	2	40.871	.306	.744
degree Celsius	Within group	1202.373	9	133.597		
	Total	1284.114	11			
Viscosity at forty	Between group	42.647	2	16.950	.185	.834
degree Celsius	Within group	1034.998	9	110.858		
	Total	1077.7645	11			
Viscosity at fifty	Between group	33.900	2	16.950	.153	.860
degree Celsius	Within group	997.723	9	110.858		
	Total	1031.623	11			
Viscosity at sixty	Between group	27.507	2	13.754	.118	.890
degree Celsius	Within group	1046.737	9	116.304		
	Total	107.244	11			

TABLE 7: RESULTS OBTAINED FROM PLOTS OF TEMPERATURE AGAINST TIME FOR DETERMINATION OF COOLING RATES AND SPECIFIC HEAT FOR THE THREE SAMPLES OF BOMBAX COSTATUM

			<u>COSTATUM</u>	•		
Sample	Linear regr. Equation	\mathbf{R}^2	Cooling	Bulk Density	Specific heat	M.C
			Rate	(kg/m^3)	$(JK^{-1}Kg^{-1})$	(%)wb
			(⁰ C/min)			
82%wb	Y = -1.1x + 89	0.98	-1.1	688	21303.54	82
28%wb	Y = -0.5x + 90	0.99	-0.5	586	17147.39	28
10%wb	Y = -0.95x + 86	0.91	-0.95	516	15013.30	10

TABLE 8: RESULTS OBTAINED FROM THE PLOT OF TEMPERATURE VERSUS TIME FOR
DETERMINATION OF HEATING RATE AND
BOMBAXCOSTATUMTHERMAL DIFFUSIVITY OF SAMPLES OF
GENGER.

Sample	Linear regr. Equation	R^2	Heating Rate (⁰ C/min)	Bulk Density (kg/m ³)	Thermal Diffus (m ² /hr)	M.C (%)wb
82%wb	Y = 1.52x + 36	0.96	1.5	688	1.3254 x 10 ⁻⁴	82
28%wb	Y = 1.8x + 28	0.93	1.8	586	6.36192 x 10 ⁻⁴	28
10%wb	Y = 1.3x + 56	0.94	1.3	516	3.24492 x 10 ⁻⁴	10

TABLE24 : THE THERMAL PROPERTIES OF THE THREE SAMPLES OF <u>BOMBAX</u> <u>COSTATUM</u> CONSIDERED AS DETERMINED IN THIS WORK.

Sample	Specific heat (JK ⁻¹ kh ⁻¹)	Thermal diff. (m ² /hr)	Thermal cond. (wm ⁻¹ K^{-1})	BulkDen. (Kg/m ³)
82%wb	21303	1.3254 x 10 ⁻⁴	1.9420	688
28%wb	17147.39	6.36192 x 10 ⁻⁴	6.5145	586
10%wb	15013.30	4.59472 x 10 ⁻⁴	3.5595	516

IV. DISCUSSION

Table 1 shows the average results of Apparent viscosity against temperature at different share rates and moisture contents. It can be seen that all samples followed the same thermal pattern. Rha (1975) and Kahn et al (1990) reported that chemical composition affects rheological and thermal behaviours of food materials. The similarity in thermal behaviour of all the samples is therefore not surprising, since they all have the same chemical composition, though there were variations in their moisture contents. Table 2 also revealed that apparent viscosity decreased with increasing temperature. Similar trends were observed by Alakali and Ijabo, 2003 for tomato pastes, Alakali et al., (2001) for canarium oil, Satimehin et al., (2003) for palm oil. The observation of increasing temperature resulting to decreasing viscosity can be attributed to increase in molecular kinetic energy brought about by increased temperature, which hasten alignment of molecules in the flow direction. The trend has been reported for many food materials in literature (Robinson, 1990, Sopade and Kasumu, 1992, Satimehin et al 2003).

The temperature dependency of consistency index was investigated using the Arrhennius relationship Satimehin et al (2003). The regression parameters are presented in Table 4 .The activation energy (slope) and frequency factor term of Arrhennius plot were derived by least squares regression equation as 24.88KJmol⁻¹, 46.52KJmol⁻¹ and 52.50KJmol⁻¹ for samples of bombax costatum at moisture contents of 82%wb, 28% wb and 10% wb respectively. The R^2 was between 0.86 to 0.96, which implies that the temperature effect can be explained with Arrhenius relationship. Predictive models were subsequently developed for the prediction of apparent viscosity of Bombax costatum at different temperatures as can be seen in Table 4. The importance of this is known in the bond breaking energy required to initiate a thermal activity and chemical reaction

when necessary (Akinremi, 1999).According to the values of activation energies obtained in this work, the sample at moisture content of 10% wb required more activation energy to initiate thermal activity, followed by that at 28% wb and lastly the sample at 82% wb. This difference in values of activation energies can be attributed to the variation in percentage of moisture and flow consistency index of samples. Satimehin <u>et al</u> (2003) also established that activation energy of palm oil is higher at lower temperature range when viscosity is high and low at higher temperature range when viscosity is low.

One - way analysis of variance was performed to investigate the effect of temperature and shear rate on the viscosity of Bombax costatum across samples as can be seen in Table 5. Comparing at fixed temperatures across wet, fairly dried and fully dried samples, results show that temperature and shear rate have no significant difference on viscosity of Bombax costatum across all samples considered at 5% level of significance. The above results only confirm that the three samples have same thermal and rheological characteristics and composition .comparing viscosity across temperatures, there was significant effect at the same level of significance as can be seen in table 6. This confirms the result in table 1. The result of specific heat determined for the Bombax costatum samples at a final temperature of 90.01°C is given in table 7 and appendix i. Comparing the specific heat of the three samples, it was observed that the specific heat capacity is highest for samples of Bombax costatum at moisture content of 82% wb, followed by sample at 28% wb and lastly that at 10% wb. Sample at 82% wb gave a specific heat of 21303.54 Jk⁻¹kg⁻¹ and bulk density of 688kg/m³, 28%wb moisture content gave a specific heat of 17147.39JK⁻¹kg⁻¹ and bulk density of 586kg/m^3 while the sample with moisture content of 10% wb presented a specific heat capacity of 15013.30 JK⁻¹kg⁻¹ and bulk density of 516kg/m³. This trend or observation can be attributed to their percentage moisture content

since all the samples have same chemical composition. The temperature-time plot that produced conditions for determination of specific heat of samples gave $R^2 \ge 0.91$, which indicate that the regression or predictive equations in Table 7 can be applied to estimate temperature change with time in a cooling system for Bombax costatum. The result shows that both specific heat and bulk density of Bombax costatum increased with moisture. Irtwange (2003) presented specific heat of African Yam bean as increasing with moisture content. Akinremi (1999) also revealed that specific heat of palm oil increase with moisture content. Obetta (2000) reported that specific heat of palm kernel increases with increase in moisture content.

Table 8 and Appendix ii present the result of the thermal diffusivity obtained for three samples of Bombax costatum. Thermal diffusivity of samples at the moisture contents of 82%wb, 28% wb and 10% wb were found to be 1.3254×10^{-4} m²/hr, 6.36192 x $10^{\text{-4}}$ m²/hr and 4.59472 x $10^{\text{-}}$ ⁴m²/hr respectively. Linear regression was performed using the temperature-time plot with R^2 \geq 0.93, which indicates that the regression equations for 82%wb, 28%wb and 10%wb can be used under the same condition to predict temperature and time change in a heating system for Bombax costatum. The result shows that thermal diffusivity of the three samples does not follow a particular trend. However, sample with moisture content of 82%wb present the highest value of thermal diffusivity, followed by 10%wb and lastly the 28% wb sample (Table 8). Irtwange (2003) reported that thermal diffusivity of African Yam bean increases with increase in moisture content. Obetta (2000) also presented that thermal diffusivity of palm kernel increases with increase in moisture content. Akinremi (1999) reported a case of no particular trend on thermal diffusivity of palm Sneenarayanan and Chattopadhay (1986) oil. revealed that thermal diffusivity of rice brain decrease with increase in moisture content.

Table 9 shows the result of all the thermal properties determined in this work. Thermal conductivity of <u>Bombax</u> <u>costatum</u> samples was obtained using equation (6) It can be seen that fairly dried sample has very high thermal conductivity, followed by fully dried and lastly the wet sample. The thermal diffusivity of wet, fairly dried and fully dried samples were found to be $1.9420 \text{ wm}^{-1}\text{k}^{-1}$, $6.5143 \text{ wm}^{-1}\text{k}^{-1}$ and $2.6875 \text{ wm}^{-1}\text{k}^{-1}$ respectively. Chang (1986) reported that thermal conductivity of wheat, corn and grain increase with increase in moisture content and bulk density. Obetta (2000) reported that thermal conductivity of palm kernel increases with increase in moisture

content. Jansansky (1973) reported that thermal conductivity of soyabean seed increases with moisture content. Akinremi (1999) reported that thermal conductivity of palm oil increases with increase in moisture content.

V. CONCLUSIONS

The following conclusions are made:

(a) Apparent viscosity of <u>Bombax costatum</u> was found to decrease with increasing temperature indicating that it varies with temperature according to Arrhenius relationship.

(b) The specific heat and bulk density of <u>Bombax</u> <u>costatum</u> was found increasing with moisture content while thermal diffusivity and thermal conductivity of <u>Bombax costatum</u> did not give a clear trend across the samples.

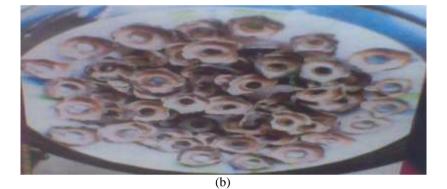
Recommendation

The rheological and thermal properties of Bombax costatum are very important characteristics that demand attention. Since there is little literature on this, I wish to recommend that other methods may be considered for the determination of this properties and compared with the results obtained in this work. Thermal conductivity may also be determined for Bombax costatum using an experimental procedure and comparing with that obtained theoretically in this work.

REFERENCES

- [1]. Akinremi ,O. M. (1999). Determination of the Thermal and rheological properties of palm oil relevant to processing: Unpublished M.Eng. Thesis submitted to the Department of Agricultural Engineering, University of Agriculture Makurdi.
- [2]. Alakali, J. S. and Ijiabo O. J. (2003). Effect of Processing methods on the viscosity, PH, and Colour of Tomato Pastes. Journal of Sustainable tropical Agricultural Research. Treasure Publishers Vol. 2 pp 220 – 233.
- [3]. Alakali ,J.S., Ijabo O.J. and Satimehin A.A. (2001) Rheological characterization of oil. Journal of Sustainable Tropical Agricultural Research. Treasure publishers,Nigeria volume 5, pp. 57 – 58
- [4]. Anaka, B. K. (1990). Standardization and Quality Control of Agricultural Products. A Phd seminal paper presented at the University of Agriculture Makurdi. P. 4.
- [5]. Dickerson, R.W. (1965) An apparatus for measurement of thermal diffusivity of foods. Foods technology vol 19 (4) 788 – 791

- [6]. Escher, F.(1983).Relevance of Rheological data in food processing, in physical properties of foods. (J.Ronalds,E.felix,H.Bungi,F.T.Hang,K.Wal ter and V.Gilbert ed) applied science publishers zurich pp,103-109.
- [7]. Fasina, O. O. And Sokhansanj, S.(1995). Bulk thermal properties of alfalfa pellets.Canadian agricultural engineering 37 (2):91-95
- [8]. Fernandez, M.F. (1972). Influence of temperature and composition on some physical properties of milk and milk concentrates. J. Dairy Res.39:75 – 82
- [9]. Glicksman, M. (1982). Functional Properties of Hydrocolloids in Food Hydrocolloids Vol. I, P. 47 – 99, CRC Press INC Roca Raton Florida.
- [10]. Gonap, P. K. (2000). Some Physical and Engineering properties of Canarium Oil. Preceding of the first International Conference and Millennium General Meeting of the Nigerian Institution of Agricultural Engineers. Vol. 22, PP. 52 – 53.
- [11]. Ihekoronye, A. I. and Ngoggy P. O. (1985). Integrated Food Science and Technology for the tropics. Macmillan Limited London. Pp. 50, 139 – 148, 172 – 190.
- [12]. Irtwange, S. V. and Igbeka, J. C. (2003). Influence of moisture content on thermal diffusivity and specific heat of African yam bean (<u>Sphenostylis stnocarpa</u>). Transactions of the ASAE vol. I. 16332 – 1636.
- [13]. Jasansky, A.and Bilansky, W. K. (1973). Thermal conductivity of whole and grand soyabeans. Trans ASAE 16 (1) 100 – 103.
- [14]. Kahn, R., Stechli, D.,Wel, L.S.,Steinberg W.P. and Yamashita,N. J.(1990).Activity and mobility of water in sweetened concentrated Disodge soy and their rheological properties. J. food science 55:537-542.
- [15]. Keay, R.W.J. (1989). Trees of Nigeria Claredon press, Oxford pp. 136 – 137
- [16]. Kent, N. L. (1983). Technology of Cereals. An Introduction of Student of Food Science and Agriculture 3rd ed. Oxford Pergamon Press P.6-9.
- [17]. Obetta, S. E. (2000). Studies on some physical-thermal properties of palm kernel.


J. of food science technology vol. 37, No. 3. 245 – 249.

- [18]. Odigboh, E. U. (1978). Instruments for Measurement of Thermal Conductivity of Solid Food Materials. Journal of Engineering and Technology Vol. 1 No. 1 Pp. 1 – 14.
- [19]. Ogbaji, M. I. (2003). Research and statistical Methods Made Easy, first edition, Line Light Publishing Company Ltd. No. 42 Benue Crescent Makurdi, Nigeria Pp. 1-2.
- [20]. Rha, C. (1975). Theories and principles of viscosity in theory, determination and control of physical properties of food material. Dordretch Holland p. 7 – 24
- [21]. Robinson G.(1990).Rheological testing of fluids foods. European food and drink review. Summer edition PP.51-54.
- [22]. Satimehin, A. A., Akinremi O. M. and Ijabo O. J. (2003). Rheological behaviour of palm oil. J. pure applied science 6(2): 291 – 297.
- [23]. Savaracos, G.D. (1970). Effect of temperature on viscosity of fruit juice and purees. J. food science 38, 122 – 125
- [24]. Sherman, P. (1974). General introduction to rheological properties of food. In lebersmittel – Einfluss – da rheologic (D. Behrens and K Fischblack eds). De]charna monographian 1505 – 1536 – vol 77 Uenlag cheme weignian. (Reported by Egbogo O. 1998 unpublished thesis, Food Science Technology UAM).
- [25]. Sreenarayanan, V. V. and Chattopadhyay, P. K. (1986). Thermal conductivity and diffusivity of rice bran J. Agric Eng. Research 34(1) 115 – 121.
- [26]. Sopade, P. A.and Kassumu A. J. (1992). Rheological characteristics of Nigerian liquid and semi-liquid foods, Kunumzaki and Kunun Gyada. Nigeria Food Journal 10: 23 – 33
- [27]. Tingir, J. N. (2003). Proximate Composition and Functional Properties of <u>Bombax</u> <u>Costatum</u>) an important soup material of middle belt states of Nigeria. Unpublished thesis Department of Food Science and Technology University of Agriculture Makurdi.
- [28]. Toledo, R. T. (1980). Fundamentals of Food Process Engineering. AV I Publishing Company, West Port Comm. Pp. 226.

(a)

(c) **Plate 1:** Samples of <u>Bombax Costatum</u> at varying moisture contents: (a)82%wb, (b) 28%wb and (c) 10%wb

TIME – TEMPERATURE DATA DETERMINED USING THE COMPARISON CALORIMETER
METHOD.

					141		<i>.</i>				
			Wet				Fairly	dried			Fully
dried											
Rep	time	(min) s	sample(mv)°C	Water(r	nv) °C	sam	ple(mv)	°C wa	ter(mv) °C	water(mv) °C
<u>samp</u>	le(mv °	°C									
1	0	03.85	90.01	3.85	90.01	3.85	90.01	3.85	90.01	3.85	90.01
3.85	90.01										
2	2	3.59	83.93	3.59	83.93	3.7	6 87.91	3.72	86.98	3.59	83.93
3.42	79.96										
3	4	3.55	83.08	3.51	81.70	3.7	2 86.98	3.64	85.11	3.59	79.96
3.38	79.03										

International Journal of Advances in Engineering and Management (IJAEM) Volume 4, Issue 2 Feb 2022, pp: 264-314 www.ijaem.net ISSN: 2395-5252

4		5.51	82.07	3.34	78.09	3.65	86.04	3.55	83.00	3.38	79.03
3.3 78 5.	8	3.42	79.96	3.25 75.	99 3.64	4 85.1	1	3.46	80.90	3.25	75.99
-	10	3.34	78.09	3.16	68.38	3.59	83.93	3.38	79.03	3.21	75.05
2.99 69 7	.91 12 3	3.25	75.99	3.08	67.40	3.55	83.00	3.29	76.92	3.16	73.88
2.95 68 8	.85 14 3	3.08	72.01	2.91 6	6.04 3.4	6 80.	90	3.25	75.99	3.12	71.12
2.91 68 9	.04 16 2	2.95	68.85	2.82	65.93	3.42	79.96	3.21	72.05	3.08	67.04
2.87 67 10		2.91	68.04	2.69 62.	89 3.38	8 78.09	9	3.12	68.12	2.99	68.41
2.82 65.				2.02.02.			·			,//	

Rep	Time (minutes)	We samp	et sampl ble	e		fairl	y dried san	ıple		fully	dried
		Sar	nple ter	np. wa	ter temp.	sampl	e temp. wa	ter ten	np. s	ample temp.	water
		temp									
		MV	-	MV	°C	Ν	ſV °C	MV	°C	MV	°C
		MV	°C								
1	0		22.91	0.98	22.91	0.98	22.91 0.9	8 22.	91	0.98 22.91	0.98
2	5	22.91									
3	10	1.71	39.98	2.74	64.06	1.11	25.95	1.88	43.96	2.69	62.89
4	15	1.80	42.09								
5	20	2.31	54.01	3.34	78.09	2.05	47.93	2.91	68.04	3.34	78.09
6	25	2.05	47.93								
7	30	2.74	64.08	3.59	83.93	2.39	55.88	3.34	78.09	3.51	82.07
8	35	2.65	61.96								
9	40	3.25	76.99	4.02	93.99	2.99	69.90	3.76	87.91	3.72	86.98
10	45	2.82	65.93								
		3.51	82.04	4.12	96.33	3.59	83.93	4.15	97.03	4.19	97.97
		3.46	80.89								
		3.65	86.54	4.19	97.97	4.02	93.99	4.15	97.03	4.19	97.97
		3.68	86.04								
		3.76	88.91	4.19	97.97	4.12	96.33	4.15	97.03	4.19	97.97
		3.85	90.02	-							
		3.93	92.19	4.19	97.97	4.12	96.33	4.15	97.03	4.19	97.97
		3.85	90.02								
		4.02	94.99	4.19	97.97	4.12	96.33	4.15	97.03	4.19	97.97
		3.85	90.02	2							

Appendix 111

TABLE24 : THE THERMAL PROPERTIES OF THE THREE SAMPLES OFBOMBAXCOSTATUMCONSIDERED AS DETERMINED IN THISWORK.

Sample	Specific heat (JK ⁻¹ kh ⁻¹)	Thermal diff. (m ² /hr)	Thermal cond. (wm ⁻¹ K ⁻¹)	BulkDen. (Kg/m ³)
82%wb	21303	1.3254 x 10 ⁻⁴	1.9420	688

DOI: 10.35629/5252-0402400412 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 411

28%wb	17147.39	6.36192 x 10 ⁻⁴	6.5145	586	
10% wb	15013.30	4.59472 x 10 ⁻⁴	3.5595	516	